Skip to main content

Exploring Your Gut Microbiome

Within each of us, a complex ecosystem of microbes thrives, encompassing bacteria, fungi, and even viruses, inhabiting nearly every part of our bodies. 

Researchers continue to unveil the profound connection between our overall gastrointestinal health—our gut health—and these microbes. 

In this blog post, we delve into the bacteria that inhabit our gut microbiome and their vital roles. 

The Bacteria of the Gut Microbiome

The gut microbiome consists of six primary types of microbes, each with distinct functions and roles within the human body: 
  • Firmicutes: These microbes break down complex carbohydrates, producing short-chain fatty acids for energy. They also maintain the gut barrier, which helps block bacteria, harmful microorganisms, and toxins from entering the bloodstream, though imbalances are linked to obesity and metabolic disorders. 
  • Actinomycetota: Actinomycetota break down complex carbs and produce vitamins B12 and K2, crucial for calcium absorption and energy generation. They also protect the gut from harmful pathogens. Pseudomonadota: These microbes reduce the gut’s redox potential, important for energy breakdown, storage, and use. They achieve this by producing short-chain fatty acids and breaking down complex molecules, promoting the growth of other beneficial gut microbes. 
  • Fusobacteriota: While these can activate inflammatory responses to combat pathogens, imbalances can lead to inflammation and diseases like periodontal disease. Bacteroides: Bacteroides break down complex carbs, regulate the immune system, and produce vitamins and metabolites essential for gut health. 
  • Other: This category encompasses various microbes that contribute to gut functions, including TM7 (oral bacteria), cyanobacteria, acidobacteria, and verrucomicrobiota.
Visualisation below created by VisualCapitalist shows what lives in your gut microbiome.

Gut microbiome

Dynamic Composition of the Microbiome

The proportions of these microbe populations vary throughout the gastrointestinal tract. For instance, the mouth and esophagus have relatively low microbial populations, with Firmicutes dominating to aid in sugar and carbohydrate breakdown.
 
In contrast, the stomach's harsh environment limits microbial growth, but a small population remains. The microbial population diversifies in the small intestine, with Firmicutes and Actinomycetota dominating. The large intestine sees further diversification, with Bacteroides and other microbes prevailing.
 
These proportions are typical but can vary due to factors like medical history, diet, age, and geography.
 

Section of Gut Microbiome

Exponential Microbial Population (CFU/ml)

Dominant Microbe

Mouth

10⁵

Firmicutes

Esophagus

10⁷

Firmicutes

Stomach

10³

Actinomycetota

Duodenum (Small Intestine)

10³

Firmicutes

Jejunum (Small Intestine)

10⁵

Firmicutes

Ileum (Small Intestine)

10⁸

Firmicutes

Large Intestine

10¹⁰-10¹²

Bacteroides

The Gut-Brain Axis

Beyond the gastrointestinal tract, these microbe populations significantly impact the gut-brain axis. This two-way link between the gut and the brain involves physical pathways and various communication forms, including hormones, metabolism, and immunity.

A distressed gut can signal the brain, contributing to anxiety, stress, depression, and other mental health issues. Conversely, emotions like anger, anxiety, and happiness can impact gut health.

Towards a Healthy Gut

Increasingly, people are recognizing the importance of gut health, often referred to as the body’s “second brain.” Understanding the microbiome has led to insights into the gut-brain axis and connections to various diseases.

This understanding opens new avenues for medicine and healthcare, potentially leading to new treatments for illnesses linked to the microbiome.

This post may contain affiliate links. As an Amazon Associate, I earn from qualifying purchases.


Comments

Popular posts from this blog

Map of Fox Species Distribution

Foxes are small to medium-sized members of the Canidae family, which also includes wolves, dogs, and other related animals. There are about 37 species of foxes distributed around the world, and they inhabit a wide range of environments, from forests and grasslands to deserts and urban areas. Below is the map of fox species distribution  created by Reddit user isaacSW Here are some of the most well-known fox species and their distribution: Red Fox ( Vulpes vulpes ): The red fox is one of the most widely distributed fox species and is found in North America, Europe, Asia, and parts of North Africa. They are adaptable and can live in a variety of habitats, including forests, grasslands, and urban areas. Arctic Fox ( Vulpes lagopus ): The Arctic fox is found in the Arctic regions of North America, Europe, and Asia. They have adaptations that help them survive in cold climates, such as a thick coat that changes color with the seasons. Gray Fox ( Urocyon cinereoargenteus ): The gray ...

How Long Does Plastic Take to Decompose?

  Plastic: the unwelcome house guest at nearly every corner of our lives — from shopping bags to footwear, coffee cups to car parts. And yet, discarded, plastic doesn't just evaporate into thin air. No, it lingers. For decades. Even centuries. According to statistics presented by Visual Capitalist , plastic daily consumer goods can break down between 20 and 600 years, depending on the composition used, how they were created, and natural elements like water and sunlight they are exposed to. Let's go deeper into why plastic takes so long to break down — and what horrid messes it leaves behind in the process. Why Plastic Isn't "Natural" — and Why That's a Problem Plastic does not naturally exist. It's a product made from petroleum and natural gas. Its long, tough carbon bonds differ from anything naturally found in ecosystems, making it extremely resistant to microbial breakdown. When we toss a plastic bottle or bag away, it's not a matter of if it will s...

Fallingwater: Where Architecture Meets the Wild

 Located in southwestern Pennsylvania's woods, Fallingwater is not a house, but a powerful conversation between nature and architecture. Completed in 1935 by Frank Lloyd Wright for the Kaufmanns, it's one of the only buildings that truly does seem alive—as if it grew directly out of the rock. What is so revolutionary about Fallingwater isn't its appearance—it's Wright's philosophy of organic architecture: the idea that houses are there to harmonize with nature, not dominate it. The house was actually constructed into the land, resting directly above a waterfall on Bear Run. Instead of looking out over the waterfall, Wright built the waterfall into the house, and the sound of running water is therefore a constant companion. Crafted From the Land, For the Land The materials used to build Fallingwater tell their own story. The stone was quarried on-site. Local craftsmen helped shape every contour. The horizontal lines of the cantilevered terraces echo the layered rock...