Skip to main content

The gravitational pull of the planets is visualized

Gravity is one of the fundamental forces in the universe without which life as we know it was impossible. 

The gravity of the sun holds all the planets in orbit in our solar system. However, every planet, natural satellite, and asteroid have their own gravitational pull determined by their size, mass, and density.

Dr. James O'Donoghue, a Planetary Astronomer at Japan Aerospace Exploration Agency, built an animation that clarifies this concept by visualizing the time it takes a ball to drop from one kilometer to the surface of various planets and the Earth's moon, assuming no air impedance.

Interestingly, some giant planets have a pull comparable to smaller ones at the surface; for instance, Uranus pulls the ball down slower than Earth. That is happening because the low average density of Uranus puts the surface far away from the majority of the mass (hence the more minor pull). Likewise, Mars has a mass almost twice Mercury, but you can observe the surface gravity is the equivalent. It suggests that Mercury is much denser than Mars.

Jupiter has the strongest gravitational field among all planets of our Solar System. The animation created by Reddit user AristonD clearly illustrates how Jupiter protects our planet from asteroids. 

I think that if it were not for Jupiter, the probability of asteroids like the one that fell on our planet 66 million years ago and wiped out the dinosaurs would be much higher.

This post may contain affiliate links. As an Amazon Associate, I earn from qualifying purchases.


Popular posts from this blog

Find cities with similar climate

This map has been created using The Global environmental stratification. The Global environmental stratification (GEnS), based on statistical clustering of bioclimate data (WorldClim). GEnS, consists of 125 strata, which have been aggregated into 18 global environmental zones (labeled A to R) based on the dendrogram. Interactive map >> Via Related posts: -  Find cities with similar climate 2050 -  How global warming will impact 6000+ cities around the world?

The Appalachian Mountains, the Scottish Highlands, and the Atlas Mounts in Africa were the same mountain range

The Central Pangean Mountains was a prominent mountain ridge in the central part of the supercontinent Pangaea that extends across the continent from northeast to southwest through the Carboniferous , Permian Triassic periods. The mountains were formed due to a collision within the supercontinents Gondwana and Laurussia during the creation of Pangaea. It was comparable to the present Himalayas at its highest peak during the start of the Permian period. It isn’t easy to assume now that once upon a time that the Scottish Highlands, The Appalachian Mountains, the Ouachita Mountain Range, and the Atlas Mountains in northwestern Africa are the same mountains , once connected as the Central Pangean Mountains.

Human Emotions Visualized

Despite significant diversity in the culture around the globe, humanity's DNA is 99.9 percent alike. There are some characteristics more primary and typical to the human experience than our emotions. Of course, the large spectrum of emotions we can feel can be challenging to verbalize. That's where this splendid visualization by the Junto Institute comes in. This visualization is the newest in an ongoing attempt to categorize the full range of emotions logically. Our knowledge has come a long route since William James suggested 4 primary emotions: fear, grief, love, and rage. These kernel emotions yet form much of the basis for current frameworks. The Junto Institute's visualization above classifies 6 basic emotions: fear, anger, sadness, surprise, joy, love More nuanced descriptions begin from these 6 primary emotions, such as jealousy as a subset of anger and awe-struck as a subset of surprise. As a result, there are 102 second-and third-order emotions placed on this emo