Skip to main content

Asian pollution, heat waves worsen U.S. smog

Asian pollution, heat waves worsen U.S. smog
Surface-level ozone, also known as smog, has increased over the past quarter century at western US rural sites during springtime, partly due to rising Asian pollution, whereas smog has decreased in the eastern US but can spike due to heat waves, according to a new study from Princeton University and the National Oceanic and Atmospheric Administration's Geophysical Fluid Dynamics Laboratory (GFDL). Shown are the 1988-2014trends in springtime ozone levels on days that were very smoggy (top panel) and of average smogginess (bottom panel), from observations (left) and from a model built by the Geophysical Fluid Dynamics Laboratory (right). Larger circles indicate sites where there is greater certainty about the ozone trend. On very smoggy days (top panel), ozone levels have declined in the east, as indicated by the blue circles. Ozone levels have increased in the west, as indicated by the red circles, despite a 50 percent reduction in the emission of smog-forming pollutants. Credit: Meiyun Lin


Source: https://phys.org/news/2017-03-asian-pollution-worsen-smog.html#jCp

This post may contain affiliate links. As an Amazon Associate, I earn from qualifying purchases.


Popular posts from this blog

Find cities with similar climate

This map has been created using The Global environmental stratification. The Global environmental stratification (GEnS), based on statistical clustering of bioclimate data (WorldClim). GEnS, consists of 125 strata, which have been aggregated into 18 global environmental zones (labeled A to R) based on the dendrogram. Interactive map >> Via www.vividmaps.com Related posts: -  Find cities with similar climate 2050 -  How global warming will impact 6000+ cities around the world?

The Appalachian Mountains, the Scottish Highlands, and the Atlas Mounts in Africa were the same mountain range

The Central Pangean Mountains was a prominent mountain ridge in the central part of the supercontinent Pangaea that extends across the continent from northeast to southwest through the Carboniferous , Permian Triassic periods. The mountains were formed due to a collision within the supercontinents Gondwana and Laurussia during the creation of Pangaea. It was comparable to the present Himalayas at its highest peak during the start of the Permian period. It isn’t easy to assume now that once upon a time that the Scottish Highlands, The Appalachian Mountains, the Ouachita Mountain Range, and the Atlas Mountains in northwestern Africa are the same mountains , once connected as the Central Pangean Mountains.

Moose population in North America

The moose population in North America is shrinking swiftly. This decrease has been correlated to the opening of roadways and landscapes into this animal's north range.   In North America, the moose range includes almost all of Canada and Alaska, the northern part of New England and New York, the upper Rocky Mountains, northern Minnesota and Wisconsin, Michigan's Upper Peninsula, and Isle Royale.    In 2014-2015, the North American moose population was measured at around one million animals. The most abundant moose population (about 700,000) lives in Canada. About 300 000 moose remains in nineteen U.S. states Alaska, Colorado, Connecticut, Idaho, Maine, Massachusetts, Minnesota, Montana, Michigan, Nevada, New Hampshire, New York, North Dakota, Oregon, Utah, Vermont, Washington, Wisconsin, and Wyoming. The largest moose specimens are found in Alaska 200 thousand moose. Below the map shows the size of US states scaled by the moose population.     Via www.vividmaps.com