Phylogenetic signal as a predictor of extinction risk in the world’s primates

Nonhuman primates, our closest biological relatives, play important roles in the livelihoods, cultures, and religions of many societies and offer unique insights into human evolution, biology, behavior, and the threat of emerging diseases. They are an essential component of tropical biodiversity, contributing to forest regeneration and ecosystem health. Current information shows the existence of 504 species in 79 genera distributed in the Neotropics, mainland Africa, Madagascar, and Asia. Alarmingly, ~60% of primate species are now threatened with extinction and ~75% have declining populations. This situation is the result of escalating anthropogenic pressures on primates and their habitats—mainly global and local market demands, leading to extensive habitat loss through the expansion of industrial agriculture, large-scale cattle ranching, logging, oil and gas drilling, mining, dam building, and the construction of new road networks in primate range regions. Other important drivers are increased bushmeat hunting and the illegal trade of primates as pets and primate body parts, along with emerging threats, such as climate change and anthroponotic diseases. Often, these pressures act in synergy, exacerbating primate population declines. Given that primate range regions overlap extensively with a large, and rapidly growing, human population characterized by high levels of poverty, global attention is needed immediately to reverse the looming risk of primate extinctions and to attend to local human needs in sustainable ways. Raising global scientific and public awareness of the plight of the world’s primates and the costs of their loss to ecosystem health and human society is imperative.

Distribution of threat values (IUCN Red List categories) for 340 primate species. Representative genera labeled. After taxonomic updates, our working phylogeny included 350 of the 367 species considered in the molecular supertree (73), of which 340 are not Data Deficient. Closely related species are more likely to have the same threat status than species taken randomly from the phylogeny [D = 0.31; P (D < 1) < 0.001], supporting a strong phylogenetic signal (see Supplementary Text for details of methodology). Data for Africa include Madagascar. IUCN Red List Categories: CR (Critically Endangered), EN (Endangered), VU (Vulnerable), NT (Near Threatened), and LC (Least Concern).

Global patterns of forecasted agricultural expansion for the 21st century in primate range regions and estimated range contraction.(A) Estimated current global primate distributions. (B) The predicted 21st century expansion of agriculture estimates a spatial overlap with about 75% of primate species habitat worldwide. Red areas indicate higher spatial overlap between agricultural expansion and primate habitat. Blue areas indicate limited spatial conflict. Agricultural expansion represents a synthesis of the expected increase in the location and area devoted to agricultural production, according to the land-cover map produced by the Integrated Model to Assess the Global Environment and potential productivity obtained from the Global Agro-Ecological Zones (Supplementary Text) (13). (C) Estimated range contraction in primate distributions by the end of the 21st century under a worst-case scenario of agricultural expansion.

Share on Google Plus

Alex E

Ecoclimax is defined by Odum (1969) as the culmination state after a succession in a stabilized ecosystem in which maximum biomass (or high information content) and symbiotic function among organisms is kept per unit of available energy flow.